THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2050B Mathematical Analysis I Tutorial 9 Date: 21 November, 2024

doc

1. Use either the $\varepsilon - \delta$ definition of limit or the Sequential Criterion for limits, to establish the following:

(a)
$$\lim_{x \to 0} \frac{x^2}{|x|} = 0$$

(b) $\lim_{x \to 1} \frac{x^2 - x + 1}{x + 1} = \frac{1}{2}$
(c) $\lim_{x \to 0} \frac{1}{\sqrt{x}}$, $(x > 0)$ does not exist.

- 2. Show that the function $f(x) = \frac{1}{x}$ is uniformly continuous of $A = [1, \infty)$ but not uniformly continuous on $(0, \infty)$.
- 3. (Exercises 5.2.5-5.2.6 of [BS11])
 - (a) Let f, g be defined on \mathbb{R} and let $c \in \mathbb{R}$. Suppose that $\lim_{x \to c} f = b$ and that g is continuous at b. Show that $\lim_{x \to c} g \circ f = g(b)$.
 - (b) Does the conclusion hold if g is not continuous at b? Give an example showing otherwise.
- 4. Suppose $f:[0,1] \to \mathbb{R}$ is a continuous function such that $f([0,1]) \subset \mathbb{Q}$. Show that f is a constant function.

- 1. Use either the $\varepsilon \delta$ definition of limit or the Sequential Criterion for limits, to establish the following:
 - (a) $\lim_{x \to 0} \frac{x^2}{|x|} = 0$ (b) $\lim_{x \to 1} \frac{x^2 - x + 1}{x + 1} = \frac{1}{2}$
 - (c) $\lim_{x\to 0} \frac{1}{\sqrt{x}}$, (x > 0) does not exist.

2. Show that the function $f(x) = \frac{1}{x}$ is uniformly continuous of $A = [1, \infty)$ but not uniformly continuous on $(0, \infty)$.

Pf: let
$$\varepsilon > 0$$
 be given and let $K_{i,y} \in [1,\infty)$. Then $\frac{1}{X}, \frac{1}{Y} \in [1, \frac{1}{X}, \frac{1}{Y}] = |\underbrace{Y + X}_{X,y}| \leq |Y - X| |\frac{1}{K}| |\frac{1}{Y}| \leq |Y - X|.$
So taking $d = \varepsilon$. If $x_{i,y} \in A$ with $|x - y| < \delta$, then
 $|\frac{1}{X} - \frac{1}{Y}| \leq |y - x| < \varepsilon$.
Shaving fis not uniformly continuous $m(0, +\infty)$. WTS $\exists \varepsilon > 0$ s.t.
for all $d > 0$, use can fiel $x_{0,y} \in (0, +\infty)$ s.t. $|x_{0,y}| < d$ but
 $|f(x_{0}) - f(y_{0})| \geq \varepsilon_{0}$.
Let's take $\varepsilon_{0} = 1$. Then for all $d > 0$. by AP ., those is a NeW
 $s.t.$ $\frac{1}{N} < \delta$. So taking $x = \frac{1}{N}$, $y = \frac{1}{2N}$.
 $|x_{0} - y_{0}| = |\frac{1}{N} - \frac{1}{2N}| = N \ge (-\varepsilon_{0})$.

- 3. (Exercises 5.2.5-5.2.6 of [BS11])
 - (a) Let f, g be defined on \mathbb{R} and let $c \in \mathbb{R}$. Suppose that $\lim_{x \to c} f = b$ and that g is continuous at b. Show that $\lim_{x \to c} g \circ f = g(b)$.
 - (b) Does the conclusion hold if g is not continuous at b? Give an example showing otherwise.

$$P_{f}^{c}: a), \quad (p_{f} \in 0, Since q is cts at b, \exists d>0 st. for xell
with $|X-b| < \delta$, then $|q(k)-q(b)| < \epsilon$.
Moreover Since $\lim_{x \to c} f = b$ for $\epsilon' = \delta$, we can fiel $\delta' > 0$
such that if $v < |x-c| < \delta'$, then $|f(k) - b| < \epsilon' = \delta$.
So replacing x with $f(x)$ above, we obtain for $v < |x-c| < \delta'$,
 $|f(k) - b| < \delta \implies |q(f(x)) - q(b)| < \epsilon$.
b) $q(k) = \begin{cases} 0, x = 1 \\ 2, x \neq 1. \end{cases}$ $f(x) = x + 1.$
 $y = \begin{cases} 0, x = 1 \\ 2, x \neq 1. \end{cases}$ $f(x) = x + 1.$
 $y = \begin{cases} 0, x = 1 \\ 2, x \neq 1. \end{cases}$ $f(x) = k + 1.$
 $y = \begin{cases} 0, x = 1 \\ 2, x \neq 1. \end{cases}$ $f(x) = k + 1.$
 $g(\phi) = q(f(0)) = q(1) = 0.$
(et (x_n) be any sequence in R st. $x_n \neq 0$ for all well and
 $x_{n} \to 0$
Then $(q_0 f)(x) = q(f(x_n)) = q(k_n + 1) = 2.$
 $50 \lim_{x \to 0} (q_0 f)(x) = 2 \neq 0 = (q_0 f)(0).$$$

4. Suppose $f: [0,1] \to \mathbb{R}$ is a continuous function such that $f([0,1]) \subset \mathbb{Q}$. Show that f is a constant function.

Pf: Suppose fis not constant. Then there exist
$$x_i, x_z \in [0,1]$$

S.t. $f(x_i) = f(x_z)$. By clusity of RUD in R, there
 \mathcal{R} \mathcal{R} is an are RUD s.t. $f(x_i) < \alpha < f(x_z)$
Then TVT tells us that there is a CE $[0,1]$ s.t.
 $f(c) = x_i \in RVR$ a contradiction,